lamindb.models.Registry

class lamindb.models.Registry(name, bases, attrs, **kwargs)

Bases: ModelBase

Metaclass for SQLRecord.

Each Registry object is a SQLRecord class and corresponds to a table in the metadata SQL database.

You work with Registry objects whenever you use class methods of SQLRecord.

You call any subclass of SQLRecord a “registry” and their objects “records”. A SQLRecord object corresponds to a row in the SQL table.

If you want to create a new registry, you sub-class SQLRecord.

Example:

from lamindb import SQLRecord, fields

# sub-classing `SQLRecord` creates a new registry
class Experiment(SQLRecord):
    name: str = fields.CharField()

# instantiating `Experiment` creates a record `experiment`
experiment = Experiment(name="my experiment")

# you can save the record to the database
experiment.save()

# `Experiment` refers to the registry, which you can query
df = Experiment.filter(name__startswith="my ").df()

Note: Registry inherits from Django’s ModelBase.

Methods

add_to_class(name, value)
df(include=None, features=False, limit=100)

Convert to pd.DataFrame.

By default, shows all direct fields, except updated_at.

Use arguments include or feature to include other data.

Parameters:
  • include (str | list[str] | None, default: None) – Related fields to include as columns. Takes strings of form "ulabels__name", "cell_types__name", etc. or a list of such strings.

  • features (bool | list[str] | str, default: False) – If a list of feature names, filters Feature down to these features. If True, prints all features with dtypes in the core schema module. If "queryset", infers the features used within the set of artifacts or records. Only available for Artifact and Record.

  • limit (int, default: 100) – Maximum number of rows to display from a Pandas DataFrame. Defaults to 100 to reduce database load.

Return type:

DataFrame

Examples

Include the name of the creator in the DataFrame:

>>> ln.ULabel.df(include="created_by__name"])

Include display of features for Artifact:

>>> df = ln.Artifact.df(features=True)
>>> ln.view(df)  # visualize with type annotations

Only include select features:

>>> df = ln.Artifact.df(features=["cell_type_by_expert", "cell_type_by_model"])
filter(*queries, **expressions)

Query records.

Parameters:
  • queries – One or multiple Q objects.

  • expressions – Fields and values passed as Django query expressions.

Return type:

QuerySet

Returns:

A QuerySet.

See also

Examples

>>> ln.ULabel(name="my label").save()
>>> ln.ULabel.filter(name__startswith="my").df()
get(idlike=None, **expressions)

Get a single record.

Parameters:
  • idlike (int | str | None, default: None) – Either a uid stub, uid or an integer id.

  • expressions – Fields and values passed as Django query expressions.

Raises:

lamindb.errors.DoesNotExist – In case no matching record is found.

Return type:

TypeVar(T, bound= SQLRecord)

See also

Examples

ulabel = ln.ULabel.get("FvtpPJLJ")
ulabel = ln.ULabel.get(name="my-label")
lookup(field=None, return_field=None, keep='first')

Return an auto-complete object for a field.

Parameters:
  • field (str | DeferredAttribute | None, default: None) – The field to look up the values for. Defaults to first string field.

  • return_field (str | DeferredAttribute | None, default: None) – The field to return. If None, returns the whole record.

  • keep (Literal['first', 'last', False], default: 'first') – When multiple records are found for a lookup, how to return the records. - "first": return the first record. - "last": return the last record. - False: return all records.

Return type:

NamedTuple

Returns:

A NamedTuple of lookup information of the field values with a dictionary converter.

See also

search()

Examples

>>> import bionty as bt
>>> bt.settings.organism = "human"
>>> bt.Gene.from_source(symbol="ADGB-DT").save()
>>> lookup = bt.Gene.lookup()
>>> lookup.adgb_dt
>>> lookup_dict = lookup.dict()
>>> lookup_dict['ADGB-DT']
>>> lookup_by_ensembl_id = bt.Gene.lookup(field="ensembl_gene_id")
>>> genes.ensg00000002745
>>> lookup_return_symbols = bt.Gene.lookup(field="ensembl_gene_id", return_field="symbol")
search(string, *, field=None, limit=20, case_sensitive=False)

Search.

Parameters:
  • string (str) – The input string to match against the field ontology values.

  • field (str | DeferredAttribute | None, default: None) – The field or fields to search. Search all string fields by default.

  • limit (int | None, default: 20) – Maximum amount of top results to return.

  • case_sensitive (bool, default: False) – Whether the match is case sensitive.

Return type:

QuerySet

Returns:

A sorted DataFrame of search results with a score in column score. If return_queryset is True. QuerySet.

See also

filter() lookup()

Examples

>>> ulabels = ln.ULabel.from_values(["ULabel1", "ULabel2", "ULabel3"], field="name")
>>> ln.save(ulabels)
>>> ln.ULabel.search("ULabel2")
using(instance)

Use a non-default LaminDB instance.

Parameters:

instance (str | None) – An instance identifier of form “account_handle/instance_name”.

Return type:

QuerySet

Examples

>>> ln.ULabel.using("account_handle/instance_name").search("ULabel7", field="name")
            uid    score
name
ULabel7  g7Hk9b2v  100.0
ULabel5  t4Jm6s0q   75.0
ULabel6  r2Xw8p1z   75.0